
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for
Explaining Packet Delays under

Virtualization
Jon Whiteaker, Fabian Schneider, and Renata Teixeira

This paper studies the impact of virtualization on round-trip time (RTT) measurements by conducting
controlled experiments on Linux-VServer and Xen, two popular platforms for virtualization.  This is an
important and timely topic given the increasing use of virtualized machines in both production networks
(e.g. Amazon EC2) and research testbeds (e.g. PlanetLab).  The measurements are carefully designed 
and insightful.  The results not only reinforce similar previous results but also shed more light on the
potential root causes.  Some interesting new findings include: (i) heavy network traffic from competing
virtual machines can introduce significant delay to RTT measurements, (ii) most delay is introduced
while sending packets (as opposed to receiving packets).  The paper also discusses the implications 
of these findings and proposes a feedback based mechanism to avoid measurement bias in virtualized
environment.  While some of these findings may require further investigation to fully understand their
root causes (e.g. by more heavily instrumenting the virtualization platforms), they are clearly useful
results to keep in mind when performing RTT measurements in virtualized environment.

Public review written by
Yin Zhang 

The University of Texas at Austin, USA

a c m             s i g c o m m

ACM SIGCOMM Computer Communication Review 38 Volume 41, Number 1, January 2011



Explaining Packet Delays under Virtualization

Jon Whiteaker
jbw@berkeley.edu

Fabian Schneider
fabian@ieee.org

Renata Teixeira
renata.teixeira@lip6.fr

UPMC Sorbonne Universités and CNRS

ABSTRACT
This paper performs controlled experiments with two popular vir-
tualization techniques, Linux-VServer and Xen, to examine the ef-
fects of virtualization on packet sending and receiving delays. Us-
ing a controlled setting allows us to independently investigate the
influence on delay measurements when competing virtual machines
(VMs) perform tasks that consume CPU, memory, I/O, hard disk,
and network bandwidth. Our results indicate that heavy network
usage from competing VMs can introduce delays as high as 100 ms
to round-trip times. Furthermore, virtualization adds most of this
delay when sending packets, whereas packet reception introduces
little extra delay. Based on our findings, we discuss guidelines and
propose a feedback mechanism to avoid measurement bias under
virtualization.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring; D.4.8
[Performance]: Measurement

General Terms
Measurement, Performance

Keywords
Virtualization, Xen, VServer, Packet Delay, Timestamping

1. INTRODUCTION
Virtualization has become a popular method to share system

resources among different users, services, or applications. For
example, PlanetLab [25] and Measurement Lab [15] use Linux-
VServer [5, 14] to enable researchers to test distributed systems
and measure Internet performance. Commercially, virtualization is
a popular tool for cloud computing, for instance Amazon’s EC2 [1]
is based on Xen [31]. In addition to measurements of Internet prop-
erties, services running in virtual environments leverage network
measurements to obtain better performance. Thus, it is important
to understand how performing measurements from a virtual envi-
ronment can affect the results, e. g., the inferences of Internet mea-
surements might be inaccurate when unexpected delay is added to
round trip time (RTT) measurements.

In this study, we focus primarily on two virtualization imple-
mentations, Xen and Linux-VServer (called VServer in the follow-
ing) because both are popular and open source. Xen is known to
achieve high performance through paravirtualization [3]. Contrary
to Xen, which supports different OSes running in the virtual ma-
chines (VMs), VServer only supports Linux-based OSes. Section 2
surveys the two virtualization techniques and describes their design
differences.

While the performance of virtualization schemes has been stud-
ied extensively with regards to achievable bandwidth, throughput,
and delay [3, 7, 13, 29], there is less work on the effects of virtual-
ization on network measurements [27, 28]. Despite many studies
reporting increased round trip times (RTT) and packet loss due to
virtualization [27–29] the causes are not well understood because
the effects have been observed in deployed systems.

In an operational system such as PlanetLab, it is hard to fully
control competing VMs, and visibility into other VMs is limited.
Therefore we setup a controlled experimentation environment (see
Section 3) with full control and visibility over both the system
and the usage of the competing VM to identify the causes of in-
creased packet delays under virtualization. We first determine fac-
tors that contribute to increased delays by exploring different work-
load cases (e. g., CPU, disk, or network load) on other VMs com-
peting with our VM performing RTT measurements. The con-
trolled environment allows us to directly attribute variations in the
measurement to the individual parameters that we alter. Second,
we locate where the delay is added by comparing timestamps from
different locations (e. g., user- and kernel-space) along the packet
sending and receiving path within the virtualized system. The mea-
sured RTTs are composed of several delays, e. g., transmission de-
lay or propagation delay, but also queuing delay at various network
elements and end hosts. Network measurements usually include all
of these delays. However, for end to end measurements, most tools
and researchers assume that local processing and queuing delays
are negligible and interpret their results without considering local
delays. We show that this assumption does not hold under virtual-
ization, and quantify the error.

As presented in Section 4 we experience extra delays added by
the host of up to 100 ms, which is on the order of round trip prop-
agation delays across the Atlantic ocean. The stress cases with the
largest impact on delays are network load (via a bulk TCP trans-
mission), full CPU utilization, and context switching (via heavy
I/O activity). Pinpointing the source of the delay we find that for
both VServer and Vanilla Linux most time is spent for moving
packets between kernel and application. For Xen, the most severe
delay is added while the packet traverses dom0. However, cross-
checking our results with OpenVZ [21], another virtualization tech-
nique similar to VServer, suggests the cause for Xen’s severe delays
may be due to the use of virtual interfaces as opposed to strictly the
method of virtualization. Moreover, investigating the direction in
which the delay is added, we determine that sending packets adds
most of the delay, while receiving adds almost no delay.

After reviewing related work in Section 5, we discuss how to
mitigate the increased delay in Section 6. We endorse the sugges-
tion of Spring et al. [28] to rely on kernel timestamps and Sommers
and Barford’s MAD tool [27] for sending precisely timed packets.

ACM SIGCOMM Computer Communication Review 39 Volume 41, Number 1, January 2011



2. VIRTUALIZATION BACKGROUND
Virtualization at its core provides an intermediate software layer

that manages multiple software instances, abstracting away the
hardware and other running code. For our purposes, we will only
consider virtualization techniques that offer isolation at least at the
operating system level. In virtualization, the software layer respon-
sible for providing isolation is called the virtual machine moni-
tor (VMM). The VMM manages multiple virtual machines (VMs),
each containing a “guest” OS. Depending on the implementation,
the VMM has different responsibilities and handles hardware ac-
cess in different ways.

2.1 Xen
Xen achieves virtualization via paravirtualization. Paravirtual-

ization requires the guest OS kernel to rewrite privileged system
calls to use instead an API offered by the VMM, which signifi-
cantly increases performance from full virtualization. Xen’s VMM,
known as the Xen hypervisor, offers complete hardware virtualiza-
tion for OS guests. Access to the underlying hardware by guest
VMs (known as Domain Us or domUs) is facilitated through a spe-
cial guest, known as Domain 0, or dom0. A good example of this
process is the implementation of networking in Xen. For each in-
terface seen by a guest OS in its domU, a virtual interface exists in
dom0 which connects to one of the physical interfaces on the ma-
chine. Thus, a packet sent from a domU travels first to dom0 via
a virtual interface, then to the hypervisor via the rewritten system
calls in the dom0 kernel, and finally onto the wire.

2.2 VServer
VServer drops the idea of an external VMM, instead it modifies

the Linux kernel to support virtualization. This kernel runs at all
times, which means that all guests must run Linux. The virtual-
ization mechanism isolates different guests by using an advanced
chroot like mechanism, switching between different containers,
each containing a complete OS environment [26]. This technique
is known as OS-level virtualization. While VServer is limited to
Linux-based guests, it offers significant performance gains. The
only virtualization overhead comes from switching between the
containers; once the switch is complete, the guest runs as if it was
the host with direct access to hardware. VServer outperforms non
OS-level virtualization solutions in achievable bandwidth since it
runs essentially without a VMM and offers direct access to the un-
derlying hardware [4].

3. MEASUREMENT METHODOLOGY
This section first describes the testbed we build for our controlled

experiments. Secondly, we describe how we infer delays by mea-
suring RTTs. Lastly, we establish a set of stress cases that can
potentially increase the RTTs.

3.1 Testbed
The measurement testbed consists primarily of three compo-

nents: The virtualized system under test (SUT), the measurement
target, and a machine containing an Endace DAG Network Moni-
toring Card [8] (see Figure 1). The SUT and target are connected to
each other via Ethernet, and the DAG card is connected in-line. Ide-
ally, we would have installed the card on the virtualized machine;
however, the Endace drivers are unable to operate under virtualiza-
tion (specifically Xen). Furthermore, we found that operating the
DAG card under heavy traffic can introduce a significant load to the
machine which could influence the results themselves. As such, we
installed the card into the remote PC used to respond to active mea-
surements. The DAG has its own clock with 15 nanosecond pre-

Figure 1: Measurement Setup

cision and passively captures packets seen on the wire. The DAG
connects in-line with a fixed copper connection between its two
RJ45 ports so no processing delays occur as packets pass through.

The SUT has a 1.8 GHz Pentium 4 processor and 2 GB RAM,
similar hardware as used by Sommers and Barford [27]. The SUT
has a Gigabit Ethernet card, however we configured it to 100 Mb/s
to be compatible with the DAG, which only supports FastEthernet.
The rest of the setup consists of Gigabit devices capable of easily
sustaining a full duplex 100 Mb/s load. The base system and virtual
machines consist of the minimum software base of the GNU Linux
based Debian distribution [6] running the 2.6.26 Linux kernel and a
handful of additional packages necessary to perform the measure-
ments. The minimal install base ensures that nothing other than the
VMM or other VMs can be responsible for differences seen under
virtualization.

3.2 Measurements
We base our experiments around a modified version of the stan-

dard ping tool, which estimates RTTs to a remote host using
ICMP packets. This measurement involves sending an ICMP Echo
Request packet, receiving an ICMP Echo Reply packet, and record-
ing the elapsed time between the two events. By using ping we
will measure any delays in sending the first packet, as well as any
delays in receiving the second packet.

Instead of reporting the RTT only, our ping version reports the
send and receive timestamps used to calculate the RTT. We will
refer to our modification as tping in the remainder of the paper.
Furthermore, our version utilizes the glibc gettimeofday()
system call for timestamping received packets instead of the default
behavior of using ioctl() and SIOCGSTAMP to retrieve kernel
timestamps for incoming packets1. A tping measurement run
consists of a series of 200 ICMP Echo Request packets padded to
100 bytes sent from the SUT to the measurement target with 250
ms between each packet. Each ICMP Echo Request received on the
target then generates an ICMP Echo Reply back to the SUT. We use
a gap of 250 ms because this is sufficiently greater than any delays
experienced after the packet arrives at the network card of the SUT.

We record the same events from several different vantage points
(see Figure 1) to understand the contribution of each part of the
system. Using the DAG, we measure the timestamps of packets on
the wire as ground truth. This includes the reception and response
generation at the measurement target. With bpf and libpcap
we record timestamps in kernel-space. Since packets in Xen pass
through the privileged domain before reaching the guest OS, we
measure kernel-space from both domU and dom0. Finally, we use
the timestamps recorded by tping to measure delays in user-
space. While it is common knowledge that kernel-space times-
tamps are more accurate than user-space time-stamps, we are in-
terested in how these values fluctuate depending on the configura-
tion of the system. Unfortunately, because the DAG and SUT are
1A behavior achieved in the ping tool with the -U option

ACM SIGCOMM Computer Communication Review 40 Volume 41, Number 1, January 2011



Figure 2: Round Trip Times (RTTs)

in different machines, we cannot directly compare timestamps. We
compute the RTT at each vantage point by subtracting the ICMP
Echo Request timestamp from the ICMP Echo Reply time-stamp
(see Figure 2). Then, by comparing the difference in RTTs com-
puted at each vantage point, we compute bi-directional delay intro-
duced at each layer, called ΔRTT2 in the following. We use the
ΔRTTs computed at each vantage point as our primary source of
comparison.

However, when comparing RTTs we cannot distinguish between
delays due to sending or receiving. To compare the timestamps
directly we need to synchronize the clocks at each vantage point.
Initially we attempted to do this by synchronizing on the first packet
of each measurement. This approach failed for two reasons: first
of all, if we synchronize the clocks based on packet arrival, we are
effectively zeroing out part of the delay that we wish to measure;
secondly, since no two clocks are identical, we see a drift between
the clocks that skews results. The first problem is easy to solve by
synchronizing the machine at rest, i. e., before we increase hard-
ware utilization. This method only loses a small factor of the delay.
The second problem is more difficult to solve. We start by sending a
set of packets at the beginning and end of each measurement when
the machine is at rest. Next, we set all timestamps as relative to the
recorded time-stamp of the first at rest packet. We then graph the
results of the difference between the recorded values on the SUT
and the DAG. Since we observe a linear drift, we perform a least
squares fit on the leading and trailing at rest packets. Finally, we
transform the graph on this line, and can now compare the delay
for each direction individually.

3.3 Variables
The main metric of our controlled experiments is the OS con-

figuration. We focus on two virtualization solutions: VServer ,
and Xen. As a baseline, we first test the system using Vanilla
Linux, i. e., the pure Linux installation without any virtualization.
In all tests, we use the 2.6.26 Linux kernel base with patches for
VServer 2.3.0.26 and the Xen 3.2.1 hypervisor respectively. Pre-
liminary experiments with newer versions, notably Xen 4.0, run-
ning on Linux kernel 2.6.32 confirm our high-level findings.

The variance in the measurements is much more likely to show
up when the system itself is being taxed, so we artificially increase
hardware utilization in several cases. Again, as a basis for com-
parison we perform measurements while the machine is at rest.
To introduce strain on the hardware, we use the open source tool
stress [30], which executes particular system calls as fast as it
can in a loop until killed. We use stress for the following stress

2ΔKern = kernel RTT − wire RTT; Δdom0 = dom0 RTT − wire
RTT; ΔdomU = domU RTT − dom0 RTT; ΔUser = user RTT −
kernel/domU RTT;

cases: CPU stress loops on sqrt() calls; HD stress alternates
between write() and unlink() calls; I/O stress loops over
the sync() system call; and memory stress spins on consecutive
malloc() and free() calls. We introduce network activity us-
ing the open source tool iperf [18]. We use two TCP connections
(each sending data in different directions up to the link capacity) to
stress the network on the same interface used by tping. Since
the network operates at 100 Mb/s this leads to a maximum load of
100 Mb/s in each direction.

For all experiments, except Vanilla Linux, four guest VMs are
instantiated. One guest executes the specified stress case, one per-
forms the measurements, and the remaining two are idle. Although
not presented here, we performed our experiments using up to four
guest VMs executing stress, with each VM executing up to four
stress threads. The results of these tests do not deviate significantly
from those presented. Therefore, we are confident that our findings
are not intrinsic to our methodology.

4. RESULTS
Table 1 presents the median and 99th percentile of the RTT mea-

surements for all three environments and all stress cases at differ-
ent vantage points. In the Δ columns, we report the contribution
of every layer at the host. The delay added by all layers, shown in
the total columns, does not necessarily add up to the total because
we report percentiles only. Note that for all experiments the time
spent on the wire (including the response generation) is already
subtracted from the reported delays. We first present our baseline
assessment of RTTs in vanilla Linux, followed by that of VServer,
and then Xen. After that we use a third virtualization technique,
OpenVZ, to decouple the delay overhead of having a VMM versus
virtual interfaces. Before we close this section with a discussion
of implications of our findings, we dissect the RTTs into send and
receive delays for all environments.

4.1 Vanilla Linux
For most stress cases the kernel of Vanilla Linux adds no more

than 134 µs to RTTs. The notable exception is network stress where
the delay of kernel-space RTTs can jump up to 6 ms. RTTs obtained
in user-space with tping reach up to 120 ms, yielding markedly
worse results.

We deduce that user-level timestamping can result in gross RTT
overestimation even without virtualization. As expected, this effect
is significantly reduced when using kernel-level timestamps, better
reflecting the actual RTT on the wire. Nevertheless, kernel-level
timestamps still exhibit delays of up to 6 ms, due to queuing at the
network card or its driver. Since this delay is not constant, per-
forming a number of tests and selecting the minimum RTT helps to
achieve better results. If the machine is running vanilla Linux, ex-
perimenters also have more visibility of and control over the state of
the system. Using the information on resource utilization of the ma-
chine (e. g., CPU/network load) allows experimenters to infer pos-
sible impact on the measured timestamps. This approach is already
leveraged by some measurement tools such as grenouille [9],
which tests network utilization before conducting experiments.

4.2 VServer
VServer shows results in the same order of magnitude as Linux

for all stress cases. Interestingly, for CPU stress, VServer even
performs slightly better than Linux. For heavy network traffic, the
kernel-space RTTs show delays of 6 ms and user-space RTTs show
delays up to 98 ms. These results agree with the findings of Som-
mers and Barford [27], who observe similar delays in the RTTs,
particularly for the network stress case. However, our results differ

ACM SIGCOMM Computer Communication Review 41 Volume 41, Number 1, January 2011



Table 1: Delays (in ms) under different workloads on systems running vanilla Linux, VServer, and Xen.

Stress
Case

Vanilla Linux VServer Xen

ΔKern ΔUser Total ΔKern ΔUser Total Δdom0 ΔdomU ΔUser Total
m

ed
ia

n
At Rest .051 .082 .134 .032 .036 .068 .150 .298 .144 .595
CPU .049 .075 .124 .035 .033 .069 .148 .464 .159 .861
I/O .049 .081 .129 .039 .059 .098 .140 4.221 .155 4.521
HD .055 .099 .154 .062 .121 .184 .137 .294 .141 .584
Memory .076 .143 .220 .076 .141 .217 .150 .320 .149 .644
Network .373 9.374 14.124 .377 24.633 25.008 5.924 5.079 .222 11.429

99
th

pe
rc

en
til

e At Rest .063 .243 .293 .048 .174 .214 .267 .584 .304 .889
CPU .067 .156 .208 .045 .132 .193 .257 32.204 .342 32.539
I/O .060 .178 .233 .050 .114 .160 .267 56.240 .355 56.566
HD .134 .435 .501 .192 .349 .454 .284 27.546 .378 27.925
Memory .089 .538 .605 .089 .518 .607 .263 .512 .338 .948
Network 6.039 89.527 92.331 6.042 83.860 84.824 8.486 19.655 .576 26.293

RTT without Wire [ms]

C
D

F
 [%

]

Linux−Kernel
Linux−User
VServer−Kernel
VServer−User
Xen−Dom0
Xen−User

0.1 1.0 10.0 100.0

0
20

40
60

80
10

0

Figure 3: CDF of user- and kernel-space
RTTs under network stress.

RTT without Wire [ms]

C
D

F
 [%

]

Xen−User At Rest
Xen−User CPU
Xen−User I/O
Xen−User HD
Xen−User Mem
Xen−User Net

0.1 1.0 10.0 100.0

0
20

40
60

80
10

0

Figure 4: CDF of user-space RTTs for Xen
under various stress cases.

pr
ob

ab
ili

ty
 d

en
si

ty

VServer−User
Xen−User

0.
0

0.
3

0.
6

1µs 10µs 100µs 1ms 10ms 100ms

receiving delay

pr
ob

ab
ili

ty
 d

en
si

ty

VServer−User
Xen−User

0.
0

0.
3

0.
6

1µs 10µs 100µs 1ms 10ms 100ms

sending delay

Figure 5: PDFs of send/receive delays for
VServer and Xen (network stress).

from those of Spring et al. [28], in that we observe greater dif-
ferences between kernel and application level timestamps (ΔUser)
when network stress is introduced. The difference may be be-
cause of the load of the machines during their experiments, which
is not documented. Figure 3 shows the CDF (cumulative distribu-
tion function) of the measured user- and kernel-space RTTs exclud-
ing the time on the wire under network stress for all environments.
Linux and VServer show similar distributions with increased RTTs
in VServer’s user-space over Linux’s user-space for roughly 10%
of the probes.

As mentioned earlier with VServer it is not easy to monitor re-
source consumption or running processes of other guests. Espe-
cially with PlanetLab’s VNET system [11], where each guest can
only capture its own traffic, a guest cannot know that the delay
comes from the host.

4.3 Xen
The results in Table 1 show that at rest, Xen causes delays three

to four times higher than those of vanilla Linux and VServer. The
kernel-space RTTs obtained from dom0 expose delays of up to
284 µs. The timestamps from domU kernel- and user-level add a
constant of roughly 300 µs and 150 µs, respectively.

Figure 4 shows the CDF of user-space RTTs (corresponds to total
column in Table 1) for various stress cases. We can easily identify
two classes of delays: those smaller than 1 ms and those larger
than 10 ms. This bimodal distribution suggests that VM scheduling
occurs in 10 ms time-slices (compare also the staircase effect for
CPU and I/O stress cases) which matches the time-slices used in
Xen’s default credit scheduler [19]. The stress cases mainly differ
in how many probes are affected by being scheduled in another
time-slice.

CPU stress increases RTTs by up to 32 ms, and I/O stress up to
56 ms. Interestingly, the measurements for domU and user-space
timestamps are nearly identical in these cases, suggesting that the
packet is passed on and both timestamps are generated in the same
VM time-slice. Note that these delays are not seen at all (RTTs
< 300 µs) when measured in dom0, showing that the majority of
the delay is introduced as the packet passes through dom0.

Once again, the most interesting results occur under heavy TCP
traffic. Similar to the previous scenarios, the domU and user-level
timestamps mirror each other, but unlike before the gap between
dom0 timestamps is much more pronounced. We observe delays
of up to 25 ms in this scenario. Network traffic induced delays are
larger than kernel-space RTTs of VServer and Linux, but less than
their user-space RTTs. Since there is virtually no delay added by
the user-space (also compare Figure 3), the delay must originate in
dom0. As sending/receiving packets is a privileged operation in
Xen, the extra delays could come from the overhead of additional
context switching and queuing between the domUs, dom0, and the
hypervisor.

Since Amazon uses a heavily modified version of Xen for EC2
[2], it is possible the same effects would not appear there. How-
ever, our results align well with Wang et al.’s [29] findings on RTT
variance, suggesting that the same underlying issues observed in
our experiments apply to EC2.

4.4 Virtual interfaces
Studying the systems under network stress revealed strong dif-

ferences between Xen and VServer. Furthermore network stress
affects RTTs across all setups. While the VServer user-space RTTs
have a heavier tail than those of Xen, the kernel-space RTTs of
VServer are much smaller than Xen’s. One could easily attribute

ACM SIGCOMM Computer Communication Review 42 Volume 41, Number 1, January 2011



this disparity to the type of virtualization: Xen implements paravir-
tualization, causing extra overhead for a VMM (the Xen hypervi-
sor) managing multiple kernels. Implementing OS-level virtualiza-
tion, VServer requires less overhead due to running only a single
kernel.

However, it is possible that the disparity results from the method
of routing traffic to the guests, which is not coupled to the type of
virtualization. VServer routes traffic to guests by modifying the un-
derlying networking stack to mark packets for the appropriate con-
tainer [26]. This is not changed when using the VNET system [11].
On the other hand, Xen routes traffic by creating virtual interfaces
(VIFs) in dom0 that mirror the interfaces seen by domUs [3] in
combination with software Ethernet bridges. In these VIFs and
bridges additional queuing can occur.

OpenVZ combines OS-level virtualization with bridges and vir-
tual interfaces [12]. This turns OpenVZ into a welcome opportu-
nity to determine if the source of the increased delays is due to
overhead from the Xen hypervisor or due to virtualized routing.
Therefore, we repeat all tests running the OpenVZ modified 2.6.26
Linux kernel to cross check our results. We find the performance
of OpenVZ to be nearly identical to that of VServer, except in the
case of network stress. The CDF distributions of RTTs for Xen and
OpenVZ when captured from VIFs (i.e. domU) are nearly identical,
with OpenVZ even performing slightly worse than Xen. Consider-
ing that OpenVZ experiences this with a single kernel this suggests
that in the case of heavy network activity the method of routing
traffic to guests is a more important factor than the overhead of the
underlying virtualization technique. While this is difficult to con-
firm under our current instrumentation, as part of our future work
we would like to compare the performance of Xen’s default net-
working stack to Open vSwitch [20], a software switch designed
explicitly for virtualization and reported to perform better than the
default Linux software bridge [24].

4.5 Sending vs. receiving delay
So far, our results focused on complete RTTs and did not dissect

the RTTs into delay per direction. For this we apply the synchro-
nization scheme explained in Section 3.2. We show the results of
the breakdown for VServer and Xen under network stress in Fig-
ure 5. We find that the accuracy of receiving packets rarely exceeds
300 µs in VServer and Linux, and 2 ms for Xen. The vast ma-
jority of the delay occurs when sending packets. This observation
is in stark contrast to the findings of Sommers and Barford [27]
and Spring et al. [28] which both saw receiving delays greater than
sending delays. A possible explanation for the differing results is
that their observed delays are caused primarily by VM scheduling
whereas the network stress implies packet queuing as a main rea-
son for delays. It is possible that queuing upon sending causes the
packet to miss its time-slot. Figure 5 supports this theory, given that
Xen’s default credit scheduler allows domains to run between 10-
30 ms and the peak of Xen’s recorded sending delay lies squarely
in this range [19].

It is our understanding that network stress is not an uncommon
scenario in virtualized environments. Any tool that measures TCP
achievable throughput (as iperf does) would create the same
workload, as could several guests performing network transfers.
In fact, such a situation could yield results with even higher vari-
ance as the link utilization fluctuates. We also note that because
the most significant delays are due to sending, the ping tool per-
forms equally poorly under network stress when using kernel-level
timestamps for ICMP Echo Reply packets (the default behavior in
Linux).

4.6 Implications
The increased delay under virtualization has an effect on both ap-

plications running in a virtualized environment and measurements
to infer Internet properties carried out from virtualized environ-
ments.

Imagine a distributed application (e. g., delay sensitive P2P live
video streaming) running on virtualized nodes. To provide best per-
formance to its users this service monitors the RTT to all of its peers
and decides if a peer is good or bad based on these measurements.
Connections to bad peers are exchanged for connections to better
peers. Now if the source of an increased RTT is the node itself,
all connections will be affected, thus changing to another peer only
adds overhead and service interruption/degradation. Even worse
considering the variations in the RTTs due to different loads, such
a P2P system could suffer from route oscillation.

Another effect of increased delay on applications is on TCP’s
RTT estimation, as already pointed out by Wang et al. [29]. Yet,
the effect is likely not that severe since TCP RTT estimation relies
on kernel timestamps, which we found to be fairly accurate except
for Xen. Moreover, the resulting congestion window increase from
the increased RTTs does not necessarily have a negative effect since
higher RTTs will cause less throughput when the congestion win-
dow is at limit. TCP’s reaction of decreasing the sending rate can
actually be desired as it also reduces the major cause of additional
delays, namely network load.

Let us now turn to the implications for Internet property mea-
surements. Network measurements often rely on being able to send
out accurately spaced packet trains. Sommers and Barford [27] as
well as Wang et al. [29] discuss how increased and varying delays
can influence tools for bandwidth and loss estimation. Thus, we
refer to those papers for details.

5. RELATED WORK
Xen’s performance has been well documented since its incep-

tion [3, 4, 7, 10, 16, 22] . However, when it comes to network mea-
surements, the focus is usually about maximizing bandwidth. Egi
et al. [7] test a number of different Xen configurations to deter-
mine the settings for optimal bandwidth. Menon et al. [16] showed
how to increase the maximum bandwidth in Xen by making im-
provements along the network path from a guest to the physical
device. Gupta et al. [10] improve isolation and fairness by adding
a network scheduler, but still focus on network throughput as an
evaluation. The paper that comes closest to evaluating the state
of network measurements from Xen is an evaluation of Amazon’s
EC2 performance by Wang et al. [29]. While bandwidth is still
a primary metric, they also measure RTTs and note issues in the
results. However, without direct access to the machines and under-
lying software, it is more difficult to determine the actual cause of
the discrepancies.

Chun et al. [5] argued that due to higher performance offered via
OS-level virtualization, VServer was chosen for PlanetLab. Some
years later Spring et al. [28] performed a thorough analysis of the
myths and complaints on PlanetLab. Among other issues, they
discussed accuracy of latency measurements and concluded that
accurate network delay can be obtained from kernel timestamps.
Sommers and Barford [27] expanded on another issue reported by
Spring et al. [28], i. e., sending precise packet trains. After confirm-
ing the problem by placing an Endace DAG card in line with one
of their PlanetLab nodes, they developed and evaluate a Linux ker-
nel module, named MAD, that facilitates sending probes at precise
intervals. Both studies base their advice on observations of Planet-
Lab nodes, whose utilization was neither recorded nor influenced.

ACM SIGCOMM Computer Communication Review 43 Volume 41, Number 1, January 2011



Yet, monitoring deployed PlanetLab nodes might pose more stress
in terms of VM switching, whereas we focus on the impact of a
single competing VM.

6. DISCUSSION
The first lesson that our study reinforces is that timestamps ac-

quired via the gettimeofday() system call do not capture the
effective sending or receiving time of a packet. This inaccuracy
can be due to scheduling effects or high system load. If available,
we suggest using kernel timestamps, which can be obtained by us-
ing libpcap for packet capture. This result is fairly self-evident,
and despite the differences in our results from those of Spring et
al. [28] regarding application-level timestamps, they also recom-
mend using kernel timestamps for the best accuracy. If accessible,
monitoring the system to detect concurrent usage and other factors
that could affect measurements can help to avoid bad measurement
samples. PlanetLab already has such a monitoring system in place
with CoMon [23]. Experiments could log CoMon output while per-
forming measurements, then decide on the validity of the results.
Enhancing measurement tools to use kernel-level timestamps and
accounting for concurrent usage is certainly worthwhile.

However, under network load, even kernel-level timestamps are
affected. In VServer, we believe the MAD [27] tool would expe-
rience the same queuing issues if running as a user process, but
might alleviate the delays if running as a kernel module. A possi-
ble alternative solution for Xen is the stricter resource scheduling
suggested by Gupta et al. [10], where network activity is shared
equally between domUs.

Unfortunately, using kernel-space timestamps does not solve
the problem for systems such as Xen and OpenVZ that can have
significant differences between obtained timestamps and effective
send/receive times. No system offers any interface to query the
sending timestamp as seen by the physical network interface card.
Hence, investigating if hardware or network interface drivers can
be extended to report such timestamps is logical next step.

7. ACKNOWLEDGMENTS
This work is part of the Nano Data Centers [17] project, which

is supported by the European Community’s Seventh Framework
Programme (FP7/2007-2013) no. 223850.

8. REFERENCES
[1] Amazon ec2. http://aws.amazon.com/ec2/.
[2] Amazon web services: Overview of security processes. Tech.

rep., Amazon, 2008.
[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proc.
SOSP ’03 (2003), pp. 164–177.

[4] CAMARGOS, F. L., GIRARD, G., AND LIGNERIS, B. D.
Virtualization of linux servers: A comparative study. In Proc.
2008 Linux Symposium (2008), vol. 1, pp. 63–76.

[5] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A.,
PETERSON, L., WAWRZONIAK, M., AND BOWMAN, M.
Planetlab: an overlay testbed for broad-coverage services.
ACM SIGCOMM Computer Communication Review 33, 3
(2003), 3–12.

[6] Debian. http://www.debian.org/.
[7] EGI, N., GREENHALGH, A., HANDLEY, M., HOERDT, M.,

MATHY, L., AND SCHOOLEY, T. Evaluating xen for router
virtualization. In Proc. ICCCN (2007), pp. 1256–1261.

[8] ENDACE MEASUREMENT SYSTEMS.
http://www.endace.com/.

[9] Grenouille. http://www.grenouille.com/.
[10] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND

VAHDAT, A. Enforcing performance isolation across virtual
machines in xen. In Proc. Middleware ’06 (2006),
pp. 342–362.

[11] HUANG, M. Vnet: Planetlab virtualized network access.
Tech. Rep. PDN-05-029, PlanetLab Document, 2005.

[12] KOLYSHKIN, K. Virtualization in linux. Tech. rep., 2006.
[13] LEE, S.-J., SHARMA, P., BANERJEE, S., BASU, S., AND

FONSECA, R. Measuring bandwidth between planetlab
nodes. In Proc. PAM (2005), vol. 3431.

[14] Linux-vserver. http://linux-vserver.org/.
[15] Measurement lab (m-lab).

http://www.measurementlab.net/.
[16] MENON, A., COX, A. L., AND ZWAENEPOEL, W.

Optimizing network virtualization in xen. In Proc. USENIX
ATC (2006), pp. 15–28.

[17] Nanodatacenters.
http://www.nanodatacenters.eu/.

[18] NLANR. Iperf. http://iperf.sourceforge.net/.
[19] ONGARO, D., COX, A. L., AND RIXNER, S. Scheduling i/o

in virtual machine monitors. In Proc. VEE ’08 (New York,
NY, USA, 2008), ACM, pp. 1–10.

[20] Open vswitch. http://openvswitch.org/.
[21] Openvz. http://www.openvz.org/.
[22] PADALA, P., ZHU, X., WANG, Z., SINGHAL, S., AND

SHIN, K. G. Performance evaluation of virtualization
technologies for server consolidation. Tech. Rep.
HPL-2007-59, HP Laboratories Technical Report, 2007.

[23] PARK, K., AND PAI, V. S. Comon: a mostly-scalable
monitoring system for planetlab. ACM SIGOPS Operating
Systems Review 40, 1 (2006), 65–74.

[24] PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K.,
CASADO, M., AND SHENKER, S. Extending networking
into the virtualization layer. In Proc. of workshop on Hot
Topics in Networks (HotNets-VIII) (Oct 2009).

[25] Planet-lab. http://www.planet-lab.org/.
[26] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER,

A., AND PETERSON, L. Container-based operating system
virtualization: a scalable, high-performance alternative to
hypervisors. ACM SIGOPS Operating Systems Review 41, 3
(2007), 275–287.

[27] SOMMERS, J., AND BARFORD, P. An active measurement
system for shared environments. In Proc. IMC’07 (2007),
pp. 303–314.

[28] SPRING, N., PETERSON, L., BAVIER, A., AND PAI, V.
Using planetlab for network research: myths, realities, and
best practices. ACM SIGOPS Operating Systems Review 40,
1 (2006), 17–24.

[29] WANG, G., AND NG, T. S. E. The impact of virtualization
on network performance of amazon EC2 data center. In
INFOCOM (2010).

[30] WATERLAND, A. stress. http:
//weather.ou.edu/˜apw/projects/stress/.

[31] Xen. http://www.xen.org/.

ACM SIGCOMM Computer Communication Review 44 Volume 41, Number 1, January 2011


